Off Topic – Delightful Conversation

Yesterday morning as my daughter, dubbed Lil’ Dardy by Christoper Danielson, and I were walking to the dining hall we had a delightful conversation. I shared it with a couple of folks who urged me to write it down to remember it. I feel that this platform is probably the most permanent one I have access to, so here goes.

We have two cats, one is named Olympic and one is named Titanic. Here is a picture of them.

IMG_1013

The black one is Titanic and he is the subject of our conversation.

We have a neighbor cat across the street who closely resembles Titanic. The neighbor cat, my daughter has dubbed this one Mr. Whiskers due to his long white whiskers, was sitting on his porch Monday morning. Lil Dardy says that she likes Mr. Whiskers because he makes her think of what Titanic will look like. She said he looks like Titanic five years from now. I proposed that, perhaps, this was a Titanic from the future who traveled in a time machine to look after his younger self. Lil Dardy responds by telling me that scientists are working hard on building a time machine. It would be great, she informs me, for kids who don’t like school. They can just skate past their school days in the time machine. She then gets serious and says ‘Dad, I’m sorry but I think I like science more than math.’ I assure her that this is not an insult and I follow by asking why it is she likes science so much. Her quote was pretty great. ‘In science you think of something and then try to make it true.’

Pretty great conversation to start my day.

#ObserveMe

I know I was not alone in being inspired early in the school year by the talk surrounding the #ObserveMe theme that was appearing on twitter and through blogs, in the wake of Robert Kaplinsky’s (@robertkaplinksy) blog post in August. I discussed this idea with my academic dean and with our school’s president and they were both supportive of the idea of trying to launch such an initiative at our school. For a variety of reasons, I did not want to be the teacher doing this, I wanted a cohort along with me.

In one of the wonderful synchronicities in life that make me so happy, I received our staff received an email about a program led by a local leadership group. They launched a class last year for local teachers and the capstone of the year long class is a school improvement project. Two of my colleagues participated last year. One of them launched an initiative related to the libraries on our two school campuses and the other launched a character awareness/character development project that is run by students. I saw this email as my opening to formalize this goal of mine and to have a reason to seek participation from a number of my colleagues. I asked for permission to apply since the program would require me to miss one day each month from September through April (our last class meeting is this Thursday) and this would put a bit of a strain on my students and my colleagues. I do not think that I have missed 8 days of school combined in the last three years, so a guarantee of 8 absences in one year felt like a huge commitment. I was approved by my school and accepted by the program and I am glad that it worked out that way.

Over the course of the year, we have had a number of pretty inspirational speakers and conversations. I have met colleagues from local schools and learned about their school cultures. I have learned a great deal of local history that I was unaware of before. Overall, it has been a worthwhile experience and I am recommending one of my department colleagues for the program for next year.

I pitched the idea of launching an #ObserveMe initiative at our school to my upper school peers at a faculty meeting late in January. We had five weeks of uninterrupted school scheduled between the end of our spring break and a long Easter weekend. I pitched this time period for the project and I solicited volunteers. I had nine colleagues volunteer to join the project and they came from everywhere in our school. An administrator who teaches history, a school counselor who does not currently have classroom duties, our lead college guidance officer who teaches a section of French, and six other volunteers who together represented every major academic department at our school. I asked them to commit to one class visit per week over the course of the five weeks I had targeted.

The project had a rough start. One day after returning from our two week spring break, a record snow storm hit us dropping over two feet of snow on our school. We were out of school for the remainder of the week. I regathered and asked folks to still try to commit to one visit per week, but it would now be four weeks. Since we had ten participants (myself included) I hoped for 40 class visits over a month. I set up a shared google spreadsheet where participants would have their schedules posted and they could make notes for days/times where visitors would not be appropriate. They also all made notes about what they wanted their visitor to focus on during the time in class. I tried to make sure that people were comfortable with visitors and that they understood that these visits were not for evaluative purposes, they were for sparking conversations. If the observer kept comments focused on the concerns raised by the classroom teacher, then (I hoped) the conversations would feel supportive and instructive.

While life got in the way of some of the participants, we got close to my goal. A total of 37 class visits occurred during the 19 day span of the project (we were off on Good Friday during the fourth week of the project window.) I sent out a questionnaire and received a number of positive responses, some of which I will share (anonymously) below.

  • More to the point, I like that having visitors in my class keeps me “honest” in a way; I find that having someone new paying attention to what is happening really helped me to focus on my own words and interactions with students.
  • I remember up until about a year or 2 ago we were required to be visited by one colleague and visit one or 2 colleagues each year. Then we had to fill out a sheet saying who we visited and who visited us.  I always found this to be a chore, something to check off my “to do” list. Although your project was more involved (many more visits to be made and many more visitors than the old requirement), it felt more helpful and less annoying. I believe the reasons for that were that it was more of an exchange (you visit me/ I visit you) and there was a purpose – we wrote in the google doc the feedback we were looking for.  This structure really helped make it worthwhile.
  • It makes me want to take classes again.  I appreciated seeing how everyone engaged their classes, especially the quiet students.
  • Overall I really loved the opportunity to see my peers in action. It brought me a sense of respect for the energy they put out with students and pride about the quality of education the students are receiving.
  • I really liked the opportunity to visit classes and talk about teaching with colleagues, and I think it would be a good thing for visitations and discussions to become part of the school culture. But, I am skeptical about it happening without teachers being made to do it.

Overall, I have to say that I am pleased with this experience. I chose not to hang a note on my door as I know many others have done because I chose not to be that public about this at this time. Since I had a small, dedicated group of volunteers and I did not want to insist that they hang such notes, I chose not to do so. I am seriously considering starting next year with such a sign outside my door. I came into this project with the idea/belief that visiting each other more regularly and more intentionally would lead to important conversations about our craft. The feedback I received, and my experience in so many different classes during this time, have reinforced and deepened that belief. I worry about the skepticism that a number of the participants expressed regarding whether this can become a part of the regular fabric of the school. I believe that this would be a much greater benefit to our students AND to my colleagues if this became a regular and widespread practice, but I suppose I should concentrate my energy on planting these seeds in my little corner of the world first.

Many thanks to Robert Kaplinsky for sparking this fire and to my colleagues who jumped in and gave their time and energy in addition to their normally busy days.

Proud of My Students

A while ago I wrote a post over at onegoodthingteach.wordpress.com (link here ) about being proud of my students on a day I was away. I have been engaged with a local leadership group this year that has had me away far more than I prefer to be. I have routinely received positive reports from my colleagues about how my students handle their responsibilities while I am away and I have always tried to share these comments with my students.

I was reminded of the importance (and joy) of this recently by two events. My blog post got a belated reply from a fellow named Josh. He linked to a post he had written on this idea. This was an important reminder not to take it for granted that my students know how much I appreciate being able to leave and knowing that some good math might still occur. The second reason is linked to my leadership program. The group in our area works with business leaders, teachers, college students, and high school students. I was asked to host one of the college students recently. The young woman who was my guest is a math major in the education program at her college. She sat in on three of my classes that day. Unfortunately, she had to leave for her class before my Geometry group met. The feedback I got from her was wonderful. She remarked on the conversations that my students were having and on the level of ideas that they were willing to wrestle with. I was SO pleased not only to hear kind words, but specifically to hear her compliment the discourse in my classroom as this is a big focus of mine. The best part though, was being able to share the remarks with my students the next day. I think that they just shrug it off a bit when my colleagues say nice things, like, maybe, they are just supposed to be nice. However, there was a more tangible reaction when the words of kindness came from a stranger, especially one who is studying math in college.

The fact that these two events happened in the same week was pretty awesome for my flagging energy level and it was a reminder of just how fortunate I am.

I’ll also be posting this reflection over at onegoodthingteach.wordpress.com

If you are not a regular over there, you should think about subscribing.

Another Thought About Assessment

One of the ideas that has been pinging around my brain recently is that the order of questions on a quiz or a test has a pretty large, but unmeasurable, effect on student performance. Not performance of the whole group, mind you. I am thinking on the granular, individual level. I am now reading Thinking Fast and Slow by Daniel Kahneman (it’s pretty fantastic so far) and he just described an experiment that got me thinking (quickly!) and I put the book down to bang out this quick post.

He describes a survey done of some students where one group of students saw these two questions in order.

  • How happy are you these days?
  • How many dates did you have last month?

When presented in this order, researchers saw essentially zero correlation between the answers to the questions. Kahneman concludes that dating is not the measurement by which students assess their own happiness. However, when the questions were reversed there was a remarkable correlation. He concludes that the first question gets students focused on that particular aspect of their lives and colors how they view the question about their own happiness.

Does something similar happen to many of our students? If an early question or two seems comfortable and familiar, does this build a sense of confidence and help lead to better results? I often find myself moving at least one of the questions that I anticipate to be a challenge toward the front of the test. My reasoning is that I want them to engage these richer questions while they still have more energy and more time to wrestle with the ideas built-in. After reading this brief description by Kahneman I am now doubting myself. I wonder if I would see better performance from some of my students if I intentionally arrange the test so as to build confidence and, perhaps, give some more built-in clues for later on in the assessment. The real problem with this type of thinking, and the type of thinking I have been more traditionally doing, is that my sense of which problems might pose a challenge do not always correlate to my students’ point of view. I think I want to have a conversation about this with my classes. My three subjects this year have such different sets of students that I suspect I will get pretty different feedback on this issue. That might serve me, and my students, well.

Any thoughts? Drop me a line here or over on twitter where I am @mrdardy

 

Making Sense of the Infinite in Calculus

Some of this blog post is kind of embarrassing to write, it regards an idea that I have worked with for years and I feel I should have had a better sense of it than I do. I’ll start with a conversation I had with my wizards in BC Calculus recently.

We are discussing convergence tests for series and one of the standard tests is the integral test. As Stewart presents it, at least how mrdardy presents Stewart’s presentation, we discuss an infinite series and if the integral of the function has a finite answer, then the series itself converges. Formally, what my students were told is this:

Suppose f is a continuous, positive, decreasing function on the interval [1,∞) and let the sequence a(n) = f(n). Then the infinite series ∑a(n) is convergent if and only if the improper infinite integral ∫f(x)dx is convergent. If the integral is convergent, then the series is convergent. If the integral is divergent, then the series is divergent.

 

Pretty clean and clear for a calculus statement, right? We had a nice discussion about the difference between looking at the integral which is a continuous summation versus the value of the series which only sums the natural number inputs. A question arose about how to compare the value of the integral with the value of the series. We decided, I really leaned them in this direction by thinking out loud, that the integral sum would be greater than the sum of the series since the integral also added “all that stuff between natural number inputs”. We all seemed happy with that conclusion until yesterday. My LaTex skills are lacking, so I will try this as best I can without that tool. Apologies in advance.

The series we were looking at was the infinite series of 4/(n^2+n). They quickly recognized that this could be rewritten using the method of partial fractions. We rewrote it and, by the magic of the telescoping series, we saw that the sum was 4. All good, right? Well, someone asked me to remind them how we could use the integral test to confirm convergence. We integrated the function using partial fractions and arrived at a sum of 4 ln2. Nice, the integral converged as well. Not so nice, the integral is less than 4. This violated what felt like a nice conceptualization that we had talked through a few days earlier. I sent out a quick call to twitter about why the integral test, that I had convinced myself of providing a ceiling for the sum approximation, would do this. I got a gentle reply from @dandersod reminding me that the integral is the floor for the approximation. I am pretty sure that I have known this at some point, but had constructed such a compelling Riemann approximation argument with my students that I was stumped.  I dismissed them for lunch.

One of my advisees dropped by for a quick chat. He is one of our three Differential Equations students this year. He took a look at the problem and I tried to convince him of my mistaken impression that the integral gathers up all this other area and should be an overestimate. He paused, thinking about the problem and then had a great ‘A-ha’ moment. He said, isn’t the series just the left hand Riemann approximation? Since the function is decreasing (otherwise, it wouldn’t converge!) this left-hand approximation will necessarily be an overestimate. Nice, clear reasoning. The kind of reasoning I should have had at my command when talking with my class a week or so ago. Sigh.

My Calculus kiddos are taking a test today. I get to apologize AND praise one of their colleagues on Wednesday when we revisit this ‘mystery’.

 

How Can I Communicate What I Value?

An email from a colleague a couple of days ago has my brain buzzing a bit. Here is the note he sent me:

Hey Jim, I just made a connection from our conversation this evening with an earlier conversation. It manifests mostly as a question/challenge.

You have said, and I agree, that we ought to value what we assess and assess what we value. So, if we value collegiality and collaboration amongst students, what is a fair and appropriate way to assess that? I feel like your group quizzes are part of the answer, but I also feel like there is more to it.

 

The night he sent me this email I went to twitter to see if I could get some feedback/pushback and I did in a lively conversation with Michael Pershan (@mpershan) where he questioned whether grades were the proper avenue for communicating what it is I value in class. He closed with a couple of important points:

I’ve never been happy while using grades to motivate (it flops) but your experiences might be different than mine here. +

One further thought: an assessment is a promise to a kid that we can help them improve on what we’re assessing.

Some background here might help me clear my thoughts and might help you, dear reader, understand the origins of this whole train of thought.

Years ago, I read a powerful piece through NCTM written by Dan Kennedy of the Baylor School. Dan had been an AP admin for some time and was around when some of the sea changes were happening with the AP math curriculum. He wrote a terrific piece called Assessing True Academic Success: The Next Frontier of Reform. You can find it here, it is worth a read. The quote my colleague referred to is from that article and it is a point I raise with my department when we talk about the role of assessment. I have written before about my commitment to trying to create a culture of communication and collaboration in my classroom and the colleague who wrote to me had just spent a week in my Geometry class observing my team in action. He references a habit I started just a year or two ago where I have one group quiz each term here. I know that this is a baby step, but I am still trying to figure out how to find a balance between personal responsibility for showing knowledge, the ability to work productively within a group, the meaning of a grade on a report card, the reality of what lies ahead for them, etc. etc. etc. I feel that a group quiz each term is a beginning, I hope it is not the end. So, my colleague is asking/urging/challenging me (and himself, I suspect) to really dig in and think about how to effectively communicate to my students that I value communication and collaboration. I have always reflexively felt that the clearest way to communicate to students what I value is to make sure that those stated values are transparent in the assessment process. If I tell my students that I value problem solving and process in mathematics but I then give them multiple choice tests, then they will suss out that I probably do not really believe what I say I believe. In comes Michael Pershan with his measured challenges. I have a few thoughts that are coherent enough to air out here about Michael’s comments. The first comment about grades is a real challenge. I work in a college prep day and boarding school. For better or worse (probably aspects of both) grades are a HUGE force in our school. As long as I feel I am being intellectually honest about what I communicate to my students through my grading practices, I am willing to accept Michael’s statement as a deeper, long-term truth while also accepting that, in the now, my students’ behaviors (and, hopefully) beliefs can be steered a bit by how I evaluate them. Given that, the struggle is to figure out a way that feels honest, transparent, and not too terribly subjective to incorporate the values of collaboration and communication into my grading system. I have been in too many classes where students ‘participate’ in conversation by simply echoing the opinions of others so that they can get their names on the participation roll. I do not want to clutter my class this way. I also want to recognize that there are students who do not want to, who do not feel comfortable, talking out loud in whole class conversations. Most of these students are willing and able participants in smaller group conversations.

One of the things I love most in life is the sense of synchronicity I have when I realize that what is on my mind is also on the minds of others. When I suddenly see references over and over to something that I think I just discovered. Well, I took a few minutes break from this post and saw a link to a lovely post crawl through on my twitter feed thanks to the MTBoS Blogbot. The post is called Why Do You Have Us Do Things That Aren’t For a Grade?. You can find it here. It was written by @viemath. Maybe this article will spark some important insights.

I have long told my students that their numerical average in my class simply represents the worst grade that they can earn. I tell them that a student with an 88% can be an A- student if they are good citizens, if they contribute to class, if they are largely consistent or on an upward arc. I also tell them that a student with a 90% is an A- even if that student is not such a great citizen. I kind of feel good about that stance. My thought at this point is that I will simply continue to emphasize this strongly and make a distinct point that one of the major mitigating factors in figuring out whether i need to lean on turning averages into grades is to attend to class engagement as the primary point of emphasis.

I am hoping for some bolt of wisdom…

Exploring Sequences

In Discrete math we are exploring recursive sequences and talking about how to make them explicit. When given a table and a recursive definition, my team of Discrete Math warriors has gotten pretty good at examining first differences, second differences, etc. and relating them back to the degree of an explicit formula. I recognize that some of this is rote, but sometimes skill development looks like that. It was not until I presented the following problem that I realized how rote some of the problem-solving has been. Here is the problem:

 

Suppose that Hamilton is playing at the Civic Auditorium. The auditorium has only one section for seating. The seats are arranged so that there are 60 seats in the first row, 64 seats in the second row, 68 seats in the third row, etc. So, in each successive row there are four seats more than in the previous row. There are a total of 30 rows in the auditorium.

  • How many seats are in the last row?

  • How many seats are there in the auditorium?

  • The seats are numbered consecutively from left to right, so row two starts with seat 61, row three with seat 125, etc. You purchased a ticket to the play and your seat number is 1500. What row are you in? Where in that row is your seat located?

 

So, the first part of the problem went reasonably well. They were able to recall that there are 29 steps of equal size to be taken in accounting for row size, but even this was harder than it should have been due to the reflex to create a table. I began to realize that what seems automatic to me, that we are concerned with row number and with accumulated seats, was not automatic to most of my students. They set up a column of row numbers followed by a column of row size. They then arrived at a first difference of 4 for each entry in their third column and they were off on finding a linear function. The linear function is correct for the number of seats in each row, but the rest of the problem depended on them finding an accumulated number of seats. When I set up a table and had row number followed by #of seats in that row and then the total number of seats, the inconsistence with previous visuals was a real problem. Getting my students to focus on the first and second differences in this new third column was a challenge. I know that I did not answer their concerns as clearly as I need to and I have to figure out how to better answer this. Once we established that this is a quadratic relationship we were able to find the coefficients and answer the second question. It took some convincing and looking at some smaller sums along the way, but I think we came to a genuine consensus. Switching over to the third part of the question was a giant hurdle. I did not intend for them to solve a quadratic since they would get an irrational solution. Instead, I hoped for some reasonable guess and check but it became clear that, for too many of them, the ladders of abstraction leading to this part of the problem completely clouded the problem for them. I have faith that this is an interesting question. In the spirit of full disclosure, it is important to note that this is simply a (slightly) modified form of a problem from our publisher’s test bank. What I need to think deeply about are the following questions:

  1. How much quadratic function review do I want to do to help set up a meaningful context for these recursive functions? My gut feeling was that I did not want to go into those thickets with these kids. Many of the students in this class are realizing that they can do some mathematical thinking once they removed themselves from thinking that mathematical thought only looks like equation solving.
  2. How do I balance the discrete nature of this problem with the inherently continuous point of view that students have regarding quadratic functions?
  3. How do I help my students focus on building a table of data that is clear and meaningful? How to focus more clearly and quickly on the pertinent data in the problem?
  4. How can I carefully structure a positive class discussion around one in-depth, challenging problem like this in a class where too many of the students have felt defeated by math one too many times? I feel great about the general atmosphere we have created together and I want to keep that while extending their thinking.

Sadly, I have to wait until next year to make this better.

Trying to Understand what my Students Understand

Starting to think about school again and this question has been clanging around in my brain. On my last test for my AP Calculus BC kiddos I included the following question: screen-shot-2016-12-29-at-11-33-34-am

My BC gang absolutely nailed this question. Almost every single one cited concavity for part b noting that a function with positive slope AND positive concavity will increase at an increasing rate while the tangent line increases at a constant rate. So, moving to the right of the point of tangency means that the function has pulled away from the tangent line. They almost uniformly used the language I just used with slight tweaks and maybe a little less detail since they were operating under time constraints. I was proud of them for such detailed answers to an important principle of graph analysis. However, after the happiness faded there was a nagging concern that arose. I worry that they are SO good at citing this language that perhaps they are simply responding to a familiar prompt. I am not here claiming that these talented students do not understand this principle. I am here claiming that I am concerned that I have ‘trained’ them too well in responding to certain prompts, that I have enabled them to simply repeat a claim that I have made convincingly in their presence. I want to do some deep thinking about how I can circle back to this idea and ask this question in a form that is similar enough that it is clear what I am asking, but different enough that my students will have to say something different to betray their understanding. I would love any advice on how to continue to poke at/probe how deeply my students understand this concept. Any clever ideas out there? Drop a line into the comments section or tweet me over @mrdardy

 

The Decisions We Make – A Postscript

Thank you thank you thank you, John Golden. John commented on my last blog post and gave me some important wisdom regarding my frustration with my own decisions and the decisions that my students had made last week. As expected, the quizzes were subpar. In the class where I had chosen not to explain the permutation notation I made the following grading decision. I graded the last problem as if it were a 10 point problem as advertised. However, when calculating their grade, I counted it as a 5 point problem. So, the students who had learned the notation earned some bonus points while those who had not were not stung quite as severely. Not a perfect solution, but it did open the door to a public conversation about my frustration and about how we might avoid their frustration AND my frustration moving forward. Don’t know yet how that will sink in, but at least it was received as a good will gesture on my part and no one complained out loud that it was unreasonable for me to have expected them to read that definition. We’ll see what happens in the next week or so as we have two more opportunities for showing some learning here.

The Decisions We Make…

I have two sections of Discrete Math this year, one in the morning and one right after lunch. During the fall term, each of these sections had 7 students. We all sat at a single group of desks together and had some great conversations. A number of the students have spoken to me about how much they enjoy this atmosphere. It does not work for everyone of course, some students prefer not to have the expectation of participation, they would prefer to quietly observe and have more time to think before speaking. Our school is on a trimester schedule and this Discrete course is set up as a trimester course where students can move in or out and not have the demands of previous knowledge from this course. So, I have done some thinking about how to make this course modular. One of my sections expanded from 7 students to 16 this term and we are in the process of figuring each other out and how this new group will mesh. One of the students who has been in the class the whole year commented that class seems more quiet this past week. Interesting that more than doubling the size of the class has resulted in a quieter atmosphere…

All of the above is just to sort of set up what our week together was. We started a probability unit this week and so far all of our energy has been spent on counting techniques. When does or matter? When does and matter? What is the difference between them? What is the deal with that ! function anyways? When can we tell whether replacement matters? These are the kinds of conversations we have been having and I have had in-class activities for us to work on together while I have been asking them to do some reading and some HW on their own outside of class. The great Wendy Menard (@wmukluk) shared some fantastic resources that one of her colleagues shared. She was also kind enough to spend some time on the phone last weekend to serve as a sounding board. One of the decisions I made was not to spend much time emphasizing notation together in class. For example, our text explains permutation notation pretty cleanly, points out that our calculator writes 10P4 while you might also see P(10,4). It clearly shows that this calculation is 10!/(10-4)! while also introducing this notation in more general form of P(n,r). In class we had a number of examples of drawing some subset of members from a group, so I thought that the text’s approach and our class approach would support each other. I also figured that any students flummoxed by the text notation would ask me in class what the deal was. So, the first HW question on Wednesday night was this in fact – Which is equivalent to P(10,4), 10!/4! or 10!/6! ? We had a quiz scheduled for Friday and on one of the questions I gave the students the numerical value of P(26,3) and asked for an explanation of how to get that answer. On Thursday I had a couple of review problems thrown together from the textbook author’s supplemental test bank. I planned on starting class by fielding any HW questions then turning them loose to work on the review problems. In my morning class I projected their HW from Wednesday night and had the first HW question on the board. Not one student knew what P(10,4) meant. They asked whether that was a point on the plane. I have to assume that they did not do the reading or the HW on their own. I quickly untangled the notation, pointed out how it matched some other conversations we had and then gave them their review sheets to work on. That was my morning class of 7 students. After lunch I had the book projected with the first HW question. Not one student in that class knew what P(10,4) meant. I decided to remark on the importance of doing the reading and the HW and then just gave them their review sheets and sat down.

One student came by on Friday morning during my free time to ask me a question about the notation and she remarked that it was clear I was disappointed (annoyed?) that no one had done the HW. She wanted to make sure she understood that notation. Each class on Friday began with me answering questions before the quiz and I do not recall anyone in either class directly asking me to revisit the P(n,r) notation at all. I have not graded the quizzes yet but I know that there were a number of students in my second class that either left the question about P(26,3) blank or simply wrote something to stumble into extra credit. A number called me over to ask about it and I said this was something they needed to know. I do not remember my morning class as clearly, they may have been in a similar boat.

So, as I think about this I realize that I made two very different decisions with my two groups of students and I am not happy about either of them. In one class I came to their rescue and explained something that they clearly could have come to terms with – in some way – on their own. In the other class I let my annoyance take over and I did not address the question at hand. I also realize that my students, especially those in my second class had two decisions to make. On Thursday night, after seeing my disappointment/frustration they could have gone back to their reading and either understood it themselves or they could have checked in with me during review on Friday. It is clear that a number of them did not do that. So I am faced with yet another decision when I grade what are likely to be disappointing papers. I feel that I want to get across a pretty clear message about responsibility but I also need to recognize my responsibility here. It is reasonable, I think, to see my role as someone who expands the conversation from the text, not as someone here to simply recite what the text already explains. But I also recognize that I have 9 students who are new to our class and all of them are new to me as a teacher. If they are used to teachers making sure that every question in their text is also addressed in class then my idea about my role might be a bit of a shock and I did not spend much time together on Monday explaining this about myself. However, I also have 14 students who were with me all fall and it is pretty clear that none (or very few) of them did the reading and the HW either.

I am not happy with myself that I let my annoyance get in the way of clear thinking. I am also not happy that I was not more clear with my morning class about my disappointment that none of them had done what I asked. I am not happy that so many students did not do the reading or the HW. I AM happy that I had a student come by and clarify the question for herself while also recognizing that she should have done so on Wednesday night. I feel that including the question when I compute the grade will likely have a pretty significant impact on many grades as it was one of four questions on the assignment. I also feel that it is a reasonable question to ask, but it relies on notation that I did not explicitly present.

I have been reading a number of the DITLife blog posts and there is a constant reminder about the number of decisions that we make on the fly everyday. These are complicated decisions and I know that I hope that I make them clearly. Here is a case where I think I was probably not as clear thinking as I should have been and I will likely need to make a decision about grading that will, luckily, not have to made on the fly. I have a bunch of new students who are only one week into their experience with me. I want it to be a good experience where they grow as scholars. I need to think carefully about how I respond to this disappointment – in my own behavior AND in the decisions they made.