In AP Calculus BC we are doing some pretty unexciting stuff right now – techniques of integration. The problems are (sort of) fun little algebraic puzzles but I find little room for conceptual conversations. Maybe I am just missing something obvious. But today was a bit of a revelation and I wish I knew better how to try and insert equations to tell the story. I’ll just have to use some tortured syntax to get my point across. I put up three pairs of integrals and told them that one in each pair was something they knew how to do before they met me (our school does BC as a second-year calculus course) while the second was one they needed my help with. I had an integration by parts example side by side with a boring old u substitution (the integrands were x cos(x^2) versus x cos x) and they knew which one they COULD do and we talked through integration by parts. I had a partial fraction problem side by side with a natural log problem (the integrands were (x – 2)/(x^2 – 4x + 3) versus (x + 1)/(x^2 – 4x + 3)) and again they knew the difference and we talked about partial fractions. I had a trig substitution problem against a boring old square root (this time it was sqrt (9 – x) versus sqrt (9 – x^2)) Then someone asked me a HW problem. They were asked to integrate the fifth power of tangent x. I took off writing and trying to get buy in at each of the many steps. I told them at the end that they knew each of the steps they just did not know which direction to move. I assured them that this was a process they would master with a bit of practice. As I was working, I made the decision to substitute for sec x and set up the answer in terms of that function. A student asked me why he could not use tangent to substitute. I did not have a bunch of time left so I asked him to hold his thought and talk to me at the end. He did. As a result, I made a document we’ll examine as a class on Monday comparing his solution and mine. You can grab that here I went through with math type to show his solution and mine. I’ll leave it to the students to determine why they look different and I hope they come to the conclusion that they are NOT different. To help push the conversation I created a Desmos graph and a GeoGebra graph to show my function (called d(x) in each case) and my students function (called j(x)) in each case, I will erase the f(x) that you can see by following these links because I don’t want to give the game away immediately. What troubled me was that each program dealt with my function and my student’s function just fine. When I combined them the graphing technology broke. I tweeted out to @desmos and received – as usual – a quick and helpful reply. In this case, the reply was simply ‘Thanks for sharing. This will help us make better graphs for the future.’ This is the second time this year that we have found a little glitch and I could not be more pleased with the response I have gotten each time. It is such a great way to emphasize to my students what a connected world we’re living in and how they can reach out and find help. My student said he spent a half an hour trying to figure out why his answer was ‘wrong’ since it disagreed with his text’s answer. I hope after Monday that he will begin to internalize the idea that he can check his answers in pretty powerful ways. Ways that I did not dream of when I was learning this stuff in 1982. What a fun fun experience seeing his work and getting the reply I did from Desmos. Add in the fact that I get a date with my wife at a local farm to table restaurant and the day could not get much better.