Thinking About Stories

One of the newer initiatives at our school is to help students listen and tell stories. We partnered with an organization called Narrative 4 (you can see their work here) I am simplifying the mission here a bit but the idea of storytelling is on my mind for a number of reasons. Next Wednesday our sophomore and freshmen students will participate in a Narrative 4 workshop sharing songs that mean something to them and explaining why. I love the power of stories and am prone to share them myself to try to make a point. I was reminded of this in the Empowered Problem Solving (#epsworkshop) run by Robert Kaplinsky. He made reference in one of the videos in a study module to ‘the story we are telling in our math class’ and this made me think of a recent frustration with our precalculus book. It all comes together, at least in my mind! Anyway, we are starting our unit on conics and our text, as many do, suddenly changes format of how a parabola equation is presented. Our students are used to y – k = a(x – h)^2 and this format makes sense to them. We can easily adapt this to x – h = a(y – k)^2. Suddenly, we are talking about the directed distance from the vertex to the focus and we introduce this new constant p. Okay so far, right? But suddenly, my students see 4p(y – k) = (x – h)^2 and they see 4p(x – h) = (y – k)^2. Why? It is pretty simple to let them know that the a that they have grown to interpret has a side personality as 1/(4p) It is easy to find a point on the curve and show distances that are equal to each other. I do not want to ignore the examples in the text because my students use it as a reference and a resource. I also do not want to stray from a meaningful way to write equations simply because of the whims of our textbook author. I also suspect that so much of what kids learn in school feels like an arbitrary set of equations and definitions and I want to battle that. I want the story in our math class to be that this is a journey together that builds on what we’ve known before. A journey that ties ideas together. A journey that feels logically coherent and consistent to the best degree that I can possibly make it. Lofty goals, I know. I just find the weird changes like the one above undercut that sense of logic, consistency, and damage the connective tissue of ideas that I try to nurture. I am almost certainly overreacting to this weird quirk of Precalc texts, but that feeling was amplified when I thought about our storytelling exercise at school and tried to reflect on Robert Kaplinsky’s message in our workshop. I love it (LOVE IT) when my brain is agitated by these ideas, when I see connections and themes in my life. I try to share that joy (agitation sometimes!) with my friends, colleagues, students, and you, my dear readers.