Empowered Problem Solving / Empowered Teachers

Not too long ago according to my calendar, but a long time ago now according to how the pace of school life moves, I finished an online workshop run by Robert Kaplinsky. The workshop, in six modules, was called Empowered Problem Solving. The modules were released on a weekly basis and were centered on videos of a workshop that Robert ran. These videos were accompanied by some outside reading in the form of blogposts and some PDFs. There were question prompts to encourage lively conversations on a message board, and there was quick support through emails from Robert and others working with him in the one or two cases early in the course when questions popped up about navigating the interface that they had set up. I did not recognize the names of folks on the message board there but I came to develop a sense of kinship through our conversations over the course of almost two months. Several themes emerged, of course, and it was interesting to go back through message boards from earlier lessons to see how my thinking was moving/growing and how the conversations deepened over that time. Looking back now, a few weeks after the course ‘ended’ [we still have access online for at least another month to revisit ideas and to help deepen our understanding/comfort with the ideas of the course] at a folder I created with documents that Robert organized for us, I realize that it will probably be out extended Christmas break when I can really digest and inject some of the habits of mind that are encouraged in the course. It made me think of my journey in grappling with/enacting/understanding the principles of inquiry and open-ended problem based lessons in the math classroom. I was forutunate to have had a Master’s Degree class in 1987 (before my teaching career began) called Mathematical Problem Solving. My grad school advisor, Prof Mary Grace Kantowski earned her Ph.D. in 1974 and her dissertation was Processes Involved in Mathematical Problem Solving, so I got a dose of this working with her and taking her class. I entered the high school classroom in the fall of 1987 and I have been honing, adapting, striving, to really figure out how to incorporate something more meaningful than practice exercises with my students. I was further energized by my first visit to the Anja Greer Conference at Phillips Exeter (I know it was between 2001 and 2005 but I cannot remember for sure what year it was) when I met Carmel Schettino and learned from her about problem solving in the math classroom and I am certain that this was my first exposure to the Exeter problem sets . The conference was mind-blowing and I was fortunate enough to attend one other time since then. Carmel’s work and advice energized me further and I started writing my own modest problem sets. Later, I wrote my own Geometry text that our school used for five years and in the process of that, I wrote HW for the course in the form of smaller problem sets. I have been fortunate enough to attend a summer think tank styled workshop that Carmel ran. I went with three colleagues to a workshop run by some folks from Packer Collegiate Institute in Brooklyn last year. I visited the Peddie School in New Jersey with three colleagues and we saw what they had done with their curriculum. Our school was visited by a member of the math department from Saint Andrew’s School in Delaware and he shared what they have done with their curriculum. All of these experiences led me to want to enroll in Robert’s online classroom and it was well worth my time and energy and the school’s investment of professional development funding. Conversations are happening in our school about the direction we want to go for our students and the visits and workshops last year helped prompt these conversations. The ideas and resources from Robert Kaplinsky’s workshop will be immensely helpful in moving this conversations forward.

All of this is a long winded way of me saying thank you to Robert, to Carmel, to the folks at Peddie who welcomed us, to Eric Finch from St. Andrew’s in Delaware, to my advisor Prof Kantowski. All of these voices throughout my career seem to be pointing the way to a more meaningful way of teaching and learning mathematics. Robert will be running his workshop again in February and March and I encourage you to take part. Whether you are just beginning to grapple with the ideas of running your classroom as a place of open inquiry and driven by problems (rather than exercises – a distinction that Prof Kantowski often discussed) or if you have been working with these ideas for years and are looking to be re-energized or more organized, this will be a great experience for you.

Thinking About Stories

One of the newer initiatives at our school is to help students listen and tell stories. We partnered with an organization called Narrative 4 (you can see their work here) I am simplifying the mission here a bit but the idea of storytelling is on my mind for a number of reasons. Next Wednesday our sophomore and freshmen students will participate in a Narrative 4 workshop sharing songs that mean something to them and explaining why. I love the power of stories and am prone to share them myself to try to make a point. I was reminded of this in the Empowered Problem Solving (#epsworkshop) run by Robert Kaplinsky. He made reference in one of the videos in a study module to ‘the story we are telling in our math class’ and this made me think of a recent frustration with our precalculus book. It all comes together, at least in my mind! Anyway, we are starting our unit on conics and our text, as many do, suddenly changes format of how a parabola equation is presented. Our students are used to y – k = a(x – h)^2 and this format makes sense to them. We can easily adapt this to x – h = a(y – k)^2. Suddenly, we are talking about the directed distance from the vertex to the focus and we introduce this new constant p. Okay so far, right? But suddenly, my students see 4p(y – k) = (x – h)^2 and they see 4p(x – h) = (y – k)^2. Why? It is pretty simple to let them know that the a that they have grown to interpret has a side personality as 1/(4p) It is easy to find a point on the curve and show distances that are equal to each other. I do not want to ignore the examples in the text because my students use it as a reference and a resource. I also do not want to stray from a meaningful way to write equations simply because of the whims of our textbook author. I also suspect that so much of what kids learn in school feels like an arbitrary set of equations and definitions and I want to battle that. I want the story in our math class to be that this is a journey together that builds on what we’ve known before. A journey that ties ideas together. A journey that feels logically coherent and consistent to the best degree that I can possibly make it. Lofty goals, I know. I just find the weird changes like the one above undercut that sense of logic, consistency, and damage the connective tissue of ideas that I try to nurture. I am almost certainly overreacting to this weird quirk of Precalc texts, but that feeling was amplified when I thought about our storytelling exercise at school and tried to reflect on Robert Kaplinsky’s message in our workshop. I love it (LOVE IT) when my brain is agitated by these ideas, when I see connections and themes in my life. I try to share that joy (agitation sometimes!) with my friends, colleagues, students, and you, my dear readers.