Persistence and Creativity

I spent six hours yesterday watching students take final exams. Three two-hour shifts. Sigh…

My last group taking an exam was my AP Calculus BC team. They had 24 multiple-choice questions and four free response questions, so they had to be efficient in their problem-solving. One of my students asked me about a multiple choice question that troubled him. It was an infinite geometric series question. This student joined our school, and our country, last year as a freshman. He place tested so highly that he started in AP Calculus AB. However, it has become apparent that there are a few facts/skills that he does not have at his command. This is rarely a problem since he is so creative. On this question, he did not have the formula in his brain for calculating the sum of an infinite geometric series. He could have listed out a handful of terms to look for convergence. He could have shrugged his shoulders and guessed since it was one of twenty-four questions. Instead, he wrote a short program on his TI-84 that gave him increasingly good approximations until he saw one of the answer choices emerge. He did this in the middle of a two-hour exam! He asked me afterwards and just laughed when I showed him how easy this problem could have been. I am convinced that he will remember this formula forever now, but I am also convinced that I will remember this story forever now. His ability to problem-solve in this situation is SO much more powerful than having a formula at his command. It is interesting that this happened on the same day that I sent our a question on twitter about the use of formula sheets on assessments. I am disinclined to use formula sheets, but I could be convinced otherwise. Here is a story that would have never happened if a formula sheet was present.

I am going to cross post this over at the One Good Thing blog space.

 

Optimistic

Another quick post. We are in exam week here at my school. I have ALL sorts of thoughts about term exams and why we do them, but those are for another place rather than this public forum. I have written about our department’s decision to move toward a test correction policy. I am so so so optimistic about our exams this week. I really believe that we will see largely improved results because the students have been more actively involved with examining their tests and reflecting on what went right and wrong on their tests. They have been talking to each other and comparing ideas. They have been talking to their teachers about how to fix their problems solving approaches. Our department exams are mostly on the next to last day of exam week. This will work against our students as energy levels start running low. Despite this, I am hopeful that we will see a different level of engagement on these cumulative exams. I will report back either way in a week or two, but I feel good based on what I have seen in the past week of reviews in class and from watching and listening to kids in the hallway as they work together.

Another Fun Problem Debate

A super quick post this morning. On my last problem set for AP Calculus BC I included the problem below:

A 10 m rope is fastened to one of the outside corners of a house, which has the form of a rectangle, 6 m long and 4 m wide. A dog is fastened to the rope. What is the perimeter of the region that the dog can access?

I have asked a form of this question a couple of times over the years. One year I did not mention that the rope was on the exterior of the house and I had a student assume that the dog was tied to a leash inside the house. I fixed that mistake.

A GeoGebra sketch below shows the image I have in my head for this problem.  

My answer to this question, and the answer that 11 of my 14 students had, was that the perimeter is 20π. Two students argued that the answer should be 20π + 20. Their argument is that the borders of the house, the sides of the rectangle in the drawing, are also part of the perimeter. I loved the debate that ensued and most students migrated to this point of view. I reflexively thought of perimeter as exterior, while these two students argued that perimeter is boundary. I think I agree with them and I LOVE the fact that they cared enough to debate this on a problem that counted for one point out of about 400 something for the term. I also LOVE that students who got their answer marked correct started arguing against the answer that they arrived at.

AP Calculus BC – A Lovely Debate

It has been WAY too long since I posted. Energy has been scattered in a number of directions lately…

 

Yesterday in AP Calculus BC their sixth problem set of the year was due. I heard quite a bit of debate among my young scholars about one question in particular. Here it is:

I wish I remembered where I found this problem. I know I have used it in the past but I do not remember much debate about it. A little background about how I approach these problem sets before I relate the conversation we had. We are on a seven day class rotation in our new schedule. This rotation sometimes even includes two weekends. I assign a problem set the first day we meet on each rotation and it is due the first day of the next rotation. My students have time to wrestle with these problems, to ask each other questions, ask me questions, look up ideas/clues/data/etc. These are sets of ten problems and they only count ten points. All of the problem sets together count about as much as one test in a term. By the time the term is up, each problem set will end up weighing about 2 – 3% of a term grade. I grade them pretty easily, looking mostly for thoughtful process and I am willing to deal with half points which feels a bit silly but it honors thoughtful work rather than whacking them for some little mistake. Anyway, the point here is that these should be low stress and they should encourage collaborative thought and work. I have been clear that I encourage them to think together. Anyway, when they came into class yesterday there were a flood of questions for each other about fine points of interpretation for this problem and students were asking me about two distinct interpretations of part b of the problem. I loved the debate, I just wish it had been happening more than 2 minutes before the work was due. The primary debate was whether to answer part b by interpreting the year as the interval from 0 to 12 or whether to interpret it as 1 to 13. Our friend GeoGebra helped us a bit. Three screen shots below: 

Now, the curve with the integral from 0 to 12 highlighted: 

Finally, the curve with the integral from 1 to 13 highlighted: 

Nice, right? The area is the same according to GeoGebra. What followed was such a highlight of my day. Intense debate about why these seem to be the same. One student notes that the obnoxious coefficient for x in the function yields a period of essentially 12. Not a surprise, right? Nice observation. A nice debate about the limits. Is 1 the end of January or the beginning? I feel it needs to be the end of the month the way the problem is written, so I came down on the side of 1 to 12 as the proper integral. An observation about the symmetry of right Riemann sums where some months have overlaps and others have underestimates. Another nice observation.  One student questions this model because he notes, as a northern city, Seattle should have more rain in the warmer weather months rather than have this mediterranean rainfall pattern. Wow. I pointed out that I know people who lived in Seattle and have visited there and that this is indicative of what I know about the area. I do not think that this would have ever occurred to me! A debate about whether we simply want to add f(1) + f(2) + f(3) + … + f(12) rather than integrate. One student mentions that he looked up the yearly rainfall in the Seattle area and the answer he found was pretty close to our integral. Good golly, that made me happy. A student questioned whether I wanted two answers to part a. I admitted that the word extreme, in this context, only made me think of a Maximum. I admitted that I should have been more careful than to make that assumption and I should include the minimum in the answer to part a as well.

We have a test today, so I pivoted the class conversation toward some practice problems but I felt that there was probably still more to discuss about this problem. Days like yesterday remind me of how spoiled I am that I get to do math with a group of scholars that are willing to engage in energetic debate about math. They are rarely interested in just knowing the answer, they seem to genuinely enjoy to process that gets them there. I am not going to pretend that all 15 students were actively engaged joining in with their ideas. I will say that there were all at least attentive and willing to let the conversation flow without pointing out, anxiously, that we need to talk about the upcoming test.

We decided a number of years ago to teach BC as a second year Calculus course at our school. We know that many of our students can accelerate through the BC curriculum in one fast year or by buying some Precalculus Honors time, but conversations like this one would be hard (not impossible) to find time for. Every year I hear a scholar say something along the lines of ‘I knew how to do this before but now I think I know why it works.’ Statements like that one, and conversations like yesterday’s make me feel good about this curriculum decision we made.

Improving a Lesson Plan

My Geometry classes have just finished a few days considering different translations on the Cartesian plane. We are working toward being comfortable with rotations (almost always around the origin), reflections (horizontal and vertical lines and the lines y = x and y = – x), and vector translations. Last week I had a particularly unsuccessful lesson where I tried to help my students discover a pattern for 90 degree rotations around the origin. I want to try and outline my thinking here and I would love love love any insight into why it did not go well and how I can improve this in the future, or even how to go back to cycle and revisit this with my current team of scholars.

So, my idea was this – try to pull together what we know about perpendicular slopes, our developing ideas of vectors as a physical object similar in nature to a line segment, and developing an intuition about the fact that a 90 degree rotation should result in a move of one quadrant in a certain direction. I asked for three coordinates from my students and drew a triangle. I asked them to predict where this triangle would end up after we moved it 90 degrees clockwise. Two of the coordinates given were in quadrant I and one was in quadrant IV. It seemed that my students were happy/comfortable with the idea that the two quadrant I points would live now in quadrant IV and that the quadrant IV point would move to quadrant III. This may have been a tepid agreement in retrospect.  Next, I focused our attention on one of the quadrant I coordinates and I drew a segment from the origin to that point. We talked about the slope of the segment, we compared this segment to a vector, we talked about the length of the segment. I then asked the students to imagine a wheel and I told them that when I think about rotations I think about a bicycle wheel. In my mind I saw this segment as a spoke and I thought about distance from the point to the center of the wheel. Here is one place where I know I failed my students. I did not explicitly stop at this point and discuss distance the way I could have/should have. I also have a handful of students who are still struggling terribly with the idea of calculating distance. We have been talking about it since day two, I have coached them to think about Pythagoras, we have practiced it repeatedly. The combination of squaring, of square roots, of subtraction in one piece of ‘the distance formula’ and addition in another piece of it, comfort with mental arithmetic, all of these factors are working against my students being unanimously comfortable with calculating distances. So, the next step in my plan was to ask them what they recalled about perpendicular slopes. They all should know this and most recalled it pretty quickly. We had a segment in front of us with a slope of 4/3 and my students quickly agreed, maybe passively maybe enthusiastically, that a segment perpendicular to this would have a slope of -3/4. So, the question at hand was now whether the fraction was in the form or -3 over +4 or in the form of +3 over -4. I was convinced in advance of this lesson that this string of conversations would be a positive path to take. I felt that the combination of recalling past slope ideas, looking at the physical Cartesian plane, tying in ideas of line equations, etc. would gel together to make a lasting learning experience. I was wrong. When I prodded them toward the conclusion that -3 over +4 was the conclusion we wanted I saw some uncomfortable faces. When I mentioned the idea of a spoke as a visual to hold on to, I saw blank faces at this point. I got a bit frustrated and asked for my students to describe to me what they were thinking of when I mentioned the word spoke. Nothing. I pulled up a google image of a bicycle wheel and asked them to tell me what the spoke was in the image. By this point their reluctance to engage in this conversation was building, my frustration was increasing, and any positive momentum in building this process was falling apart. My fault for showing my frustration. My fault for stacking up too many ideas at once, I think. When I spoke to my Geometry colleague she felt that adding on the layer of talking about perpendicular slopes was the tipping point of discomfort for my students. I trust her instincts on a number of levels in part due to her experience in teaching our Algebra I course. She knows these Algebra kiddos and knows not only what they know but how comfortable they are knowing it. So, at this point it was clear to me that this was slipping away. We limped to the end of the conversation. Most students were willing to agree that the point  (4,3) would end up in quadrant IV. They were split on whether it would land on (4,-3) or on (3,-4) and it honestly felt like many were mentally tossing coins to make this call. I showed them the conclusion on GeoGebra and we sort of ran out of time by this point.  We have since gone back and tried to reinforce the conclusion we reached and I think that most of my students can reliably answer this question, but I am completely uncomfortable with how we got there. I would love any insight/advice about how to best structure this info. You can certainly drop a comment her or over on twitter where I am @mrdardy

 

A Quick Question about Test Questions

One of the classes I teach is a non – AP Calculus class. Many of my students are showing a reasonably firm grasp of the ideas of Calculus that we are studying, but they are plagued by algebraic struggles and fears at times. I was thinking about the following two ways that I could ask them the same question:

I asked this class today how they would feel about these two forms of the question. Most of them quickly agreed that they would feel more comfortable answering question B than question A. I followed up by asking whether success on question A might feel more like success and a handful agreed that this probably was true. I am not sure what to make of this informal poll and I am bouncing this idea around in my head. I’d love to hear what you think and push back with some questions about my motivations/hopes in (possibly) restructuring my assessment in this direction.

P.S.

I have been urging them to have GeoGebra open nearby when they do their work so that they can look at graphs and ask for derivatives to verify their own work.

Checking in on a new Policy

I recently blogged about a commitment made by our math department. As a reminder to you, dear reader, here is the statement from one of my course syllabi:

Beginning in the 2017 – 2018 academic year, our math department is adopting a policy of expecting test corrections on all in-class tests. The policy is described below.

  • When grading tests initially each question will get one of three point assignments
    • Full credit for reasonable support work and correct answer.
    • Half-credit for minor mistakes as long as some reasoning is shown.
    • Zero credit (in very rare cases) when there is no reasonable support shown or if the question is simply left blank.
  • When grading tests, I will not put comments, I will simply mark one of these three ways.
  • You will be allowed to turn in corrections. Corrections will be on separate paper and will have written explanations of errors made in addition to the correct work and answer. This work is to be in the student’s words but can be the result of consultation/help. These corrections will always be due at the beginning of the second class meeting day after the assessment is returned. You will return your original test along with your correction notes. I will remind you of this every time I return a graded test to you.
  • It is not required that you turn in test corrections.
  • The student can earn up to half of the points they missed on each individual problem.
  • This policy does not apply to quizzes, only to in-class tests.

There are  a couple of items in the learning curve to report on here. I will lead with the positives –

  • We have an after school conference time that many students take advantage of for extra help. My room has been more crowded this year than it has been for years. I take this as a plus sign that students are committed to seeking help and investing in their math studies. Many of them are there talking with me and with their classmates about test corrections.
  • I have had a number of students turn in their corrections the same day that they received their tests. It is a rare thing for students to turn in work days early, it is happening regularly right now.
  • I walked out of my classroom today with a new student who was talking excitedly about how she is really thinking carefully about her work and she is sure that she’ll remember material better because of this.
  • It is faster to return tests since I am simply marking them 100%, 50%, or 0% for each problem.

Now a few negatives, followed by some philosophical pondering about this whole endeavor.

  • I anticipated that there would be very few zero scores on problems. There have been more than I thought but I hope that is a factor of students learning to show some work. This may be a positive as a zero stings a bit and they may be more inclined to be careful in their explications.
  • Some students feel stung by relatively minor mistakes that initially result in a 50% on an individual problem. These minor mistakes turn into 75%. I am trying to point out that relatively major mistakes can also end up at the 75% level but some students feel a bit cheated.
  • Early in the year averages fluctuate quite a bit anyway, but the fluctuations are exaggerated in this system. I see already that overall averages are a bit higher than normal and there is much less variance in scores. However, some students are scared since they have a hard time seeing the long game as clearly.
  • Explaining this to folks outside the department has been a bit of a challenge.

 

When I was working on my doctorate I had a professor (my thesis advisor) who had a policy that every paper will be rewritten, not just every paper can be rewritten. The way he did this was to return our first drafts with no comments, just hash marks in the margin at certain points of the paper. These hash marks might be there to point out a flaw in our argument or our paper’s structure. They might also indicate a highlight. They might indicate a misspelling or a simple grammar problem. He was willing to discuss these hash marks in his office hours as long as it was clear that we had sound questions about them, in other words we had to prove to him that we had reflected on our writing. I have never thought so much about my own writing as I did in that class. I do not expect my 14 year olds to do this kind of self analysis, but I know that they ARE capable of careful reflection if they are given the time, space, and motivation to do so. What I am seeing when they come to me is that they have looked over their test, they have referenced notes and their HW. They have done careful thinking and they can usually explain their mistake on their own. This is not universal, but it is happening more often than not. Many students who come to my room to work on corrections have almost no question for me. They are berating themselves for ‘stupid mistakes’, they are laughing at silly things they wrote, they are even saying ‘I have no idea what this work means’ I am pretty convinced that this can be a huge growth opportunity for my students. They are being responsible for their own error analysis here and they are writing thoughtful reflections in the form of ‘On problem 4 I made this mistake, I should have done this instead’

We have midterm grade comments looming and as department chair I know I will have some questions coming my way about our reasoning and the long-term impact on grades. I will try to steer the conversations to long-term impact on learning and self-sufficiency. So far the policy has exceeded my hopes in my classes. I will be checking in with my department to get other points of view soon and I plan on sharing some of those conversations as well.

 

Should My Preferences be my Students’ Preferences?

At the beginning of every year I am reminded that there are little quirks I have about how I would like to see answers presented and I have this silly assumption that my brand new students should just know what I want. I wish that I remembered this in August and prepped myself and my students with some conversations. I am writing this brief post this morning while one of my classes is taking a test. I would love some feedback here in the comments or over on twitter where I am @mrdardy

I just graded my first problem set from my AP Calculus BC wizards. One of the questions asked for the point on the curve y = x^(1/2) that was closest to the point (4,0). Everyone correctly identified x = 3.5 as the critical x value and about half of them identified (3.5)^(1/2) or sqrt(3.5) [my LaTex skills are weak and I am in a bit of a hurry…] as their y-coordinate. However, about half of them gave me a three decimal approximation. For reasons I cannot completely justify it makes me nutty to see a less exact answer written as an extra step in their work. I know that their science teacher is not interested in radicals in their answers. I know that carpenters do not have radicals on their measuring tapes. I also know that all of my Calc BC kiddos had the exact value for y written at one point in their solutions and many chose to do a little extra writing to make their answer less exact. Am I being a crank if I make this a point of conversation? Along the same lines, I urge them not to rationalize but many cannot help themselves. I urge them to leave a line equation in point-slope form when that is one of the steps in their problem-solving process. I ask them to write x < 3 rather that 3 > x, especially in a piecewise function where I want to read through their domain in order.

These are tiny, tiny problems to focus on. I recognize this. But I also know that I will spend many months with this group of students and I want them to understand my thoughts since I am asking them to routinely explain theirs on paper to me. I would love to hear points of view about how important any of these habits are for kids of this caliber. I am completely open to recognizing that these are just weird little quirks of mine, but I also hope that there is some mathematical logic underlying all of this. Please drop a line to let me know what you think and how you have responded to students in your efforts to help them develop a clear and consistent strategy for communicating their mathematical ideas.

Test Corrections, Round One

I mentioned in an earlier post that our school’s math department has adopted a new policy this year. After our spring workshop with Henri Picciotto (@hpicciotto) one of the decisions we arrived at was to allow (almost require) test corrections from students. The goal was to encourage and reward reflection and communication on the part of our students. When I wrote about it originally Brian Miller (@The MillerMath) told me he would hold me to my vow to report back on this. Here is round one’s report.

First, I should remind everyone reading this what our new policy statement is. Here is what my students read on their syllabus this year.

Beginning in the 2017 – 2018 academic year, the math department is adopting a policy of expecting test corrections on all in-class tests. The policy is described below.

  • When grading tests initially each question will get one of three point assignments
    • Full credit for reasonable support work and correct answer.
    • Half-credit for minor mistakes as long as some reasoning is shown.
    • Zero credit (in very rare cases) when there is no reasonable support shown or if the question is simply left blank.
  • When grading tests, I will not put comments, I will simply mark one of these three ways.
  • You will be allowed to turn in corrections. Corrections will be on separate paper and will have written explanations of errors made in addition to the correct work and answer. This work is to be in the student’s words but can be the result of consultation/help. These corrections will always be due at the beginning of the second class meeting day after the assessment is returned. You will return your original test along with your correction notes. I will remind you of this every time I return a graded test to you.
  • It is not required that you turn in test corrections.
  • The student can earn up to half of the points they missed on each individual problem.
  • This policy does not apply to quizzes, only to in-class tests.

The first class to have a test this year was my AP Calculus BC class. This class has sixteen students of the highest math caliber at our school. They had a test in class on Tuesday and on Tuesday night I marked those tests. On a number of occasions I had to restrain myself from circling something or writing a note to a student. I went through and only marked each question as a 0, a 5 or a 10. There were six questions, so I graded 96 questions overall. Only one 0 out of all these 96 questions. Thirty four questions earned half credit and the other sixty one questions earned full credit. Of those thirty four, most mistakes were minor and in the past they would certainly not have suffered a five point penalty, but in the past they would not have had the ability to earn back points and they would not have had the motivation to think clearly about what happened. Due to quirks in our rotating schedule, the second class day after yesterday is not until Monday. However, I have six of my students in my room after school yesterday working on corrections. All of them spoke to me about problems and three of them were working with each other. Four of the six students there completed their corrections and turned them in already. This feels like success. I know that it is early in the year and students have a little more energy right now. I know that this is my most motivated (by knowledge, by interest level, and by grades) group of my four different class preps I have this year so I will not expect quite this level of engagement right away. Oh yeah, two of the students there yesterday only missed points on one of the six questions. The could have happily taken their 92% and gone home to worry about other work instead. I expect that I will see another one or two folks today and then get a slew of corrections in on Monday. The initial grading was a little bit faster and I could get them their tests back right away. Looking at the corrections will take a little time, but this is time I want to take and it is encouraging the kids to think about what mistakes they have made and (hopefully) not make those same mistakes again. I’ll keep updating on this experiment.

 

A Fun Question Through Different Lenses

Today I had three of my five classes meet and they all met before lunch. So, now, I am writing a blog post after lunch!

 

Here is the problem –

Doris enters a 100-mile long bike race. The first 50 miles are along slow dirt roads, while the second half of the race is on smooth roads. Assume that Doris is able to travel at a constant rate of speed on each surface.

  1. If Doris’ speed on the first 50 miles of the race is 10 miles per hour, what must be her speed during the second half of the trip so that her average speed over the whole trip is 13 1/3 miles per hour?
  2. If Doris’ speed on the first 50 miles is12.5 miles per hour, what must be her speed on the second half of the trip so that her average speed over the whole 100 miles is 25 miles per hour?

 

A fairly standard question and I admit I stole it directly from a text I use ( a pretty cool Differential Calculus book for my non-AP class) and I originally intended to just use it with my Calculus Honors class this morning. After the discussion with them, I decided it was worthy of the attention of my Geometry section and my Discrete Math class as well. It is kind of fascinating to me to think about the different receptions that the problem had in each class. In all three classes I asked them to think about the first question and wait until we discussed it before moving on. I KNEW what mistake was going to be made. There was no doubt in my mind that the answer to question 1 would be 16 2/3 and the students did not disappoint me. They focused on the information given and processed it in a logical way given their use of the word average when considering two measurements. What they did not focus on was time and it is logical that they did not because it is not explicitly mentioned in the problem at all. My hope going in with my Calc Honors kiddos was that this would be an object lesson in weighted averages. What it turned into in my other two classes was a bit of a primer in how to think through a word problem instead of just automatically applying some mathematical operation on a set of numbers in front of you. In each class after the initial incorrect solution was offered I presented the following question. “I have a 90 on my first test and I score 100 on my second. What is my average? Now, I have a 90 average after four tests and I score 100 on my fifth. Is my average the same in each situation?” I had hoped, overoptimistically, that this would prompt thought about time but in all three classes I ended up explicitly urging them to think about time. In Calculus Honors and in Discrete this led most (maybe all) students to a correct conclusion. Not so with my younger Geometry students who were still a bit wary of the problem. In fact, one student asked me if all of my questions were going to be like this. I need to be a little more careful about these last minute decisions to follow my muse and approach a problem. I need to be more thoughtful about how appropriate the question is for the audience at hand. I still believe that this is a meaningful question for my Geometry kiddos to wrestle with, but perhaps I would have served them better by not making this the opening question on the second day of school…

Both groups of older kids arrived at the correct conclusion to the second question and they were amused by the result. Only two days in but of the eight classes I have had, I’d say 7 were successful with one uncomfortable miss.