More Similarity Adventures

Yesterday we had a two hour delay and I was looking around for an idea to engage my Geometry students at the end of the day. As I have been writing about for awhile now, we are engaged in conversations about similarity. We had some Kuta skills practice, we had some problem sets I wrote for the students for HW practice and today I wanted to have a little activity where I could introduce a question and get out of the way and listen to them debate/discuss/discover some important ideas. I looked at my own Virtual Filing Cabinet and rediscovered a great question posed by Nat Banting (@NatBanting) over on his blog called Musing Mathematically. The question I pulled was from a post last year looking at coffee cups. That particular post can be found here. Below are the two key photos that prompted the conversation yesterday. Screen Shot 2016-02-17 at 8.43.34 AM

Screen Shot 2016-02-17 at 8.52.31 AM

I posed the following questions on my class handout :

  1. Show that these cups are not similar.
  2. If the small cup of coffee costs $0.99, how much would you expect the large cup of coffee to cost?
  3. Since they are not similar, change the height of each cup – maintaining the diameter of the top – so that the cups are similar to the small size.
  4. Now, instead change the height of each cup – maintaining the diameter of the top – so that the cups are all similar to the extra large size.

 

Before presenting these questions/challenges I prefaced the conversation by talking about the habit of upsetting, like at a movie theater concession stand, and pointed out that larger sizes are (almost) always the better value but usually not necessary. Another important note is that I allowed them to ‘cheat’ a bit by presuming that the coffee cups are cylindrical. We have not officially touched on much in the way of volume conversations so we needed to come to an agreement, which we did quickly, on what the volume of a cylinder ought to be.

I am so thrilled with how our conversation unfolded and with the ideas that popped up during our chat. The students were quick to notice that the large and extra large cups each have the same diameter, so similarity there is thrown out the window. A student quickly nominated the ratio of height to diameter as the scale factor that was important. They were shocked by the theoretical cost for the large cup of coffee. I suggested that we ignore the pi in the calculations of volume and at first they were happy with my reason why and then they balked at the idea of just throwing it out of the calculations. This seemed to be a nearly perfect length for an exploration on a silly thirty minute class day schedule. I only hope that they remember nearly as much of the conversation as I do.

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *