On Friday in Geometry we were continuing our conversation about triangle centers and I asked my students to find the point where medians coincide in a scalene triangle. There is a good amount of algebraic detail in these problems but my students were doing a nice job pushing through this problem. After finding the centroid, I asked them to form a new triangle from the three midpoints we needed when considering medians. We found the perimeter of the original triangle and I asked also for the perimeter of the triangle formed by the midpoints. One of my students theorized that the new triangle would have one-fourth the perimeter of the original triangle. I asked the other students to quiet for a moment to hear this guess. Before asking GeoGebra to check his answer he quickly corrected himself and said he was thinking about area, not perimeter. A beautiful realization on his part that this triangle formed by midpoints would divide the original triangle into four equal areas. Just as we were congratulating him for this guess another students asked about equilateral triangles. He wondered aloud whether the midpoint triangle in an equilateral triangle would form four equilateral triangles. I realized he was asking whether the triangles formed in the scalene we were looking at were also congruent, not just equal in area. A quick question from me confirmed my guess so we drew our attention again to the GeoGebra sketch we had up. He was able to identify where the congruent angles were that allowed us to prove congruence for the triangles.

This conversation was a wonderful way to end our day on Friday. I am delighted that my students are comfortable enough to make these guesses out loud and even more delighted that they are making such good guesses right now. I pointed out how helpful it is to play with GeoGebra to check these guesses and I hope (I hope hope hope!) that some of my students are making a habit of this.

*Related*