# More Creative Problem Solving

The problem above came across my twitter feed this morning courtesy of John Joy (@johnjoy1966) along with the suggestion that this was a problem from a trig unit. John also questioned who this problem would be appropriate for. I told him I would feed it to my wizards in AP Calculus BC. I also had a class coming in right after John posted it so I did not see any of the conversation – this way I could present it to my class with no prejudice about what to say. When they came in the next period I had the problem from the tweet up on the screen with no other support. I simply said that this seemed like an interesting problem and I had not had time to try it myself. I handed out the whiteboards to each desk group – this was their suggestion! – and I got out of the way. I heard them talk about the function being odd so that they knew f (-3) right away. One group found f (6) by imagining it as f (3 + 3). This meant, of course that they also knew f (-6). Progress, right? But nothing about knowing the values of f (1), f (2), or f(3). I asked if they wanted to hear a hint and three students quickly waived off that notion. After another couple of minutes I went to the board and started writing what we seemed to know about the function.   I wrote f (3) = f(1 + 2) and wrote out what the definition of the function suggested. We got an ugly expression for comparing f(1), f(2), and f(3) to each other but it was not promising. I was itching to give them a hint but they were holding me off. One of my students – thinking out loud – wondered if this might be a periodic function based on the values we knew on the board. Another group suggested that it might be a sine function. I hopped at this – another example of how I need to work on developing a poker face of some sort. The group backed up a bit and suggested that they were kind of joking, but I buoyed them up by reminding them of the periodicity suggestion. I finally gave them a vague clue – one too vague to have helped them at all. One of my students during a class warm up a few days before had the back of his book open to a series of formulas and review facts from their study of trig. I reminded the class that I complemented him on that and I pointed out the similarity of the given function to a trig identity involving the tangent function. The kids were a bit flustered claiming that no one remembers these formulas but they sealed the deal right away once they had this fact in hand.

So, what did I learn from them today?

1. I need to work on my poker face.
2. I need to stop giving clues, they are too good to need them.
3. This group of students is super persistent and creative.
4. The small desk groupings AND the randomization every Monday seems to be working.
5. The whiteboards give them space to ‘think out loud’ and effectively share ideas.

Man, a terrific day in Calculus thanks to my wizards and my virtual friends who prod my brain with their great problems.