## Thinking About Stories

One of the newer initiatives at our school is to help students listen and tell stories. We partnered with an organization called Narrative 4 (you can see their work here) I am simplifying the mission here a bit but the idea of storytelling is on my mind for a number of reasons. Next Wednesday our sophomore and freshmen students will participate in a Narrative 4 workshop sharing songs that mean something to them and explaining why. I love the power of stories and am prone to share them myself to try to make a point. I was reminded of this in the Empowered Problem Solving (#epsworkshop) run by Robert Kaplinsky. He made reference in one of the videos in a study module to ‘the story we are telling in our math class’ and this made me think of a recent frustration with our precalculus book. It all comes together, at least in my mind! Anyway, we are starting our unit on conics and our text, as many do, suddenly changes format of how a parabola equation is presented. Our students are used to y – k = a(x – h)^2 and this format makes sense to them. We can easily adapt this to x – h = a(y – k)^2. Suddenly, we are talking about the directed distance from the vertex to the focus and we introduce this new constant p. Okay so far, right? But suddenly, my students see 4p(y – k) = (x – h)^2 and they see 4p(x – h) = (y – k)^2. Why? It is pretty simple to let them know that the a that they have grown to interpret has a side personality as 1/(4p) It is easy to find a point on the curve and show distances that are equal to each other. I do not want to ignore the examples in the text because my students use it as a reference and a resource. I also do not want to stray from a meaningful way to write equations simply because of the whims of our textbook author. I also suspect that so much of what kids learn in school feels like an arbitrary set of equations and definitions and I want to battle that. I want the story in our math class to be that this is a journey together that builds on what we’ve known before. A journey that ties ideas together. A journey that feels logically coherent and consistent to the best degree that I can possibly make it. Lofty goals, I know. I just find the weird changes like the one above undercut that sense of logic, consistency, and damage the connective tissue of ideas that I try to nurture. I am almost certainly overreacting to this weird quirk of Precalc texts, but that feeling was amplified when I thought about our storytelling exercise at school and tried to reflect on Robert Kaplinsky’s message in our workshop. I love it (LOVE IT) when my brain is agitated by these ideas, when I see connections and themes in my life. I try to share that joy (agitation sometimes!) with my friends, colleagues, students, and you, my dear readers.

## Brief Post – First Days

Busy busy start to the year. I want to take a moment to reflect on and remember a couple of important highlights.

Opening Day

We meet all classes for 30 minutes on day one and we have an hour long convocation ceremony. Our Student Body President is always one of the speakers. This year’s President was in my Precalculus Honors course last year. She delivered a touching speech about productive struggle in my course last year – a course she ended up excelling in, by the way. I have heard a number of speeches by adults advising the importance and lasting power of productive struggle. I imagine that this speech by one of their colleagues probably meant more to our students than hearing some grown up tell them about the glories of allowing yourself to struggle through something. The fact that she highlighted the very things I hope my students take away from my class made it pretty special. The fact that the whole upper school community (and my immediate supervisors!) heard it as well made for a pretty special opening day.

Regular Old Day One

My day started with my AP Calc BC team. I had assigned a HW problem I had never done before. They were asked to graph x + |x| = y + |y|

The table group that had this problem struggled a bit and we talked it through as a group. We then called on Desmos to graph it and the result was not what we thought it should be. I did what I do, I tweeted out the problem and within fifteen minutes one of my former advisees tweeted out a fix so that Desmos would agree with us. It is delightful to have that connection with a student who my current students still remember. It was also fun to think that my questions are still interesting enough to warrant his attention.

There will be some rough days this year, there always are. I want to remember days like this so it is easier to get through the tough ones!

## Another New Beginning – Around the Corner

On Monday I report for beginning of the year meetings for the 33rd time. As usual, I have thoughts scattered all about and, as usual, I am going to try to use this space to help whip those thoughts into shape.

This morning I read the latest NCTM email and there was an essay included written by President Berry. In his essay, he challenges us to think about our why. Why do I teach math? He suggests that figuring out the why is a HUGE step to making our classrooms more coherent and productive. In the essay he links to a couple of posts and my favorite of them is from David Wees. You can find it here and it is well worth your time.

So, I guess my question here (see what I did there?!?!?) is this – Is it meaningful to my students to have me share some version of the story above so as to clue them in to my priorities? Is it meaningful to share my priorities in a personal way as an avenue to have them think about theirs? After all, the classroom is theirs more than mine. I need to find a way to recognize and respect their needs in a way that supports what I believe (what I think I know) about teaching and learning. I want to be explicit in discussing our goals and it feels that a personal story about what motivates me to do what I do might be a smart way to do this.

Thoughts? As always, please share any wisdom here in the comments or hit me up over on the twitters where I am @mrdardy

## The Case For, and Against, Test Retakes

I am overdue in writing about a high energy twitter exchange I was engaged in recently. I am going to include a few links here in this post that will help give some background to the conversation.

First, many thanks to those on twitter who are willing to engage and get my brain moving. In this particular story the star twitter pal is Kristie Donavan (@KristieDonavan) who went on quite a twitter tear and wrote a GREAT blog post. First, I will link the article that started the whole discussion.

So, here I am with about two weeks left before the beginning of my school year. I am trying to balance what would make sense for me as a teacher in my classroom with what would work for my department and what would work in our school context as we try to figure out the path that our new leadership wants to explore. All of this needs to be framed with our students in mind, they are the point of why we are doing any of what we are doing. I have an additional ingredient in my head that becomes more and more pronounced and that is the fact that my older child is now in our high school. Factors that I had been thinking about in terms of educational philosophy are suddenly feeling more urgent and more personal.

This month I start my 33rd year of classroom teaching. At one point in my life I thought I would have figured all of this out already. I suppose the job would be less rich and rewarding if that were true.

## Thinking About Speed and Time

On first glance, the title of this post has me thinking about my Calculus classes, but that is not the speed and time angle that is on my mind this morning. Yesterday, I finished listening to the newest episode of Malcolm Gladwell’s Revisionist History podcast. The episode (found here) is called Puzzle Rush which is the name of a variant of chess. In the episode Gladwell raises some interesting questions regarding chess, the LSAT, and various places in our society where it seems that speed is valued more than deep thought. He keeps referring to the hare and the tortoise and wonders when the hares got to make the rules. This pod has me thinking about my assessment practice. As I often do, I am going to use this space to think out loud and I am going to hope for the usual outpouring of wisdom here and on twitter to help me work through my questions/concerns.

1. How do you estimate the time needed for your students to complete a task in class? I have 50 minute classes (mostly) for testing. I generally work on the idea that I should be able to carefully write out my solutions in about 15 minutes. No real science behind this, just accumulated experience.
2. When writing a test where I am pretty sure that there is one especially challenging (I usually call them interesting!) question, I try to place that one near the front half of the test. Students can, of course, skip around but most just plow through. I want the problem requiring the most thought to be placed where there is still some time for that thought to occur.
3. When students finish their test, they are dismissed. Is this smart? How do you approach this?
4. Our schedule, like many of yours I would guess, does not really encourage flexibility with students who might want that simple two to three extra minutes to wrap up work. I have students coming in for their class and I want to respect their time. My students are on their way to their next class and I do not want to interfere with that time. I am uncomfortable, for a number of reasons, with the idea of having them just come back to wrap up later. Any comments/ideas/hacks that have worked within these pretty common scheduling restrictions?

As always, thanks in advance for any wisdom. I am looking forward to a good conversation that will benefit me and my students.

## Balancing Group vs Individual Work

For over ten years now, my classroom has been setup for group work and talk. Currently, I have desks in groups of three and I reshuffle the groups after five class meetings using flippity. One of the courses I teach is called Honors Calculus. It is a differential calculus course that is an option instead of AP Calculus AB. What is typically done be the first week of December in the AB course takes us into May. This allows much more time to review algebra and trig ideas and to really dig into the mechanics and principles of Calculus. I don’t skimp on the level of analysis I ask for in this class, we just have more time to settle in. This year, after a conversation in the first trimester, I settled in to a routine where we have group quizzes – I write five versions of each quiz – but we have individual tests. My hope was that this would decrease the level of stress in the classroom, that it would increase the level of communication between the students, and that hearing multiple voices would increase the likelihood of ideas and techniques sticking with my students. What I have witnessed is that this process has decreased the level of stress overall because a handful of students just don’t worry much knowing that they are paired with confident kids who can carry them to the finish line, the level of conversation HAS increased, but only for a subset of the students who end up in the role of explainer, and ideas are NOT sticking. Mistakes made in November are still being made. Skills practiced (or at least skills that have been available for practice) are not embedded. On our most recent individual test about 15% of my kids did not recognize the need to use the product rule when taking the derivative of a product. I have asked a variation of the exact same question for the last three tests and there is no noticeable improvement in answering that question.

As always, any words of wisdom here or over on the twitters (where I am @mrdardy) are much appreciated.

## Thinking Out Loud

Been too long since I wrote, all sorts of reasons but none of them meaningful enough really.

I often use this space to air some thoughts and questions and I always value the conversations that ensue either here or over on twitter (where I can be found @mrdardy)

So, I guess what I am asking dear reader are these questions –

Are unannounced assessments inherently unfair?

Are check ins on developing understanding reasonable data to register and count (in some way) as part of the report on progress that is expected at my school?

Is the habit of cramming an inherent part of the problem that we math teachers see all the time – Fragile knowledge or simple lack of ability to recall and reorganize information that has (allegedly) been learned in previous courses?

Thanks in advance for any wisdom shared here or over on twitter

## A Residue of Professional Development

So, the session I wrote about a few days ago (you can find that post here ) continues to pay dividends. Yesterday my Precalc Honors kiddos had a test. Today we were to begin discussing vectors. I had what felt like a pretty clever idea this morning. I started off by posting this image (stolen from the opening evening problem that Amy and Allyson shared with us )

I got a quick question back asking if the dots were equidistant. I confirmed and then my students began to quietly count. I encouraged them – as I always do – to chat with each other and I was hearing things about medium sized squares, big squares, etc. I suggested that some more formal classification might be helpful. A couple of kids quickly concluded that there are 30 squares to be formed. This is a correct answer under certain restrictions. unfortunately, these restrictions were not placed on the question. A student named Max said 40 out loud, then said 50. This shook up the crowd a bit and people began to dig in. However, they were hesitant to debate Max because he has a reputation (well deserved) for being pretty on point with questions like this one. SPOILER ALERT: I AM ABOUT TO UNVEIL OUR SOLUTION. IF YOU WOULD LIKE TO AVOID THAT AND THINK ABOUT IT FOR AWHILE FIRST, COME BACK LATER.

Still with me? Good, happy to have you. I went to the board and drew a square of side length sqrt(2) and got two great reactions right away. One person called this a diamond but acknowledged it is also a square. Another said we should redefine squares to avoid this. I then stepped out of the way to encourage discussion about sizes of diamonds that could be formed. We had a list on one side of the diagram listing number and size of ‘squares’ and developed a list on the other side of the number of, and size of, the different diamonds. We had some great debates about the parameters here. We decided that the only diamonds had size lengths of sqrt2, sqrt5, sqrt8, and sqrt10. We were unsatisfied with the seeming lack of a clear pattern here. You will see in the picture below how I tried to impose a little bit of order on the counting by making sure that I identified groups of diamonds or squares in numbered sets that were all perfect square integers in their count. What you will also see in the picture (coming soon, I promise!) is that I pivoted the conversation soon to vectors. My Precalc Honors kiddos took a test yesterday and we are prepared to start a new chapter on vectors. I did not particularly advertise that this was the next topic, but it felt like I could pivot in that direction. Many of the kids in this class took Geometry at our upper school with a text I wrote. In that text, I intentionally introduce some vector language early in the year. When I got to school today, I did not intend to pivot from this diagram straight into talking about vectors, but when we were discussing diamonds of length sqrt5 I realized that it was meaningful to distinguish between a horizontal change of 2 with a vertical change of 1 versus a horizontal change of 1 and a vertical change of 2. Time for the photo now and then a little more explanation.

So, in the photo above, a bit of glare there unfortunately, you see a green side of delta x = 1 and delta y = 2. I drew an arrowhead and one student muttered ‘vectors!’ It felt like such a natural trigger and frame to discuss vector notation. Almost instantly kids were discussing magnitude, direction, remembering notation, etc. Man, it was a great way to start the day!

I ended up sharing this problem with a couple of other classes during the day and each time I confessed that my partner and I only found 45 squares and were VERY confident of our answer. Each class figured out where we had gone wrong and they seemed pretty proud that we worked through this all together.

Another opportunity here to thanks Amy and Allyson for the great PD session and I know that I will be pulling some other tricks out of the bag of tools that they provided for us last week.

## Meaningful Professional Development

Back in November we were having conversations at our school about improving our ability to place new students in our curriculum. Every year we have a wave of brand new students who have to move down from our original placement suggestions and it is always a frustrating thing for them and for us. So, I did what I do and I reached out to a number of department chairs at schools like ours seeking advice. One of the people I reached out to was Amy Hand. She is the math chair at Packer Collegiate Institute in Brooklyn, NY. In addition to sharing some wisdom, she also mentioned a workshop she was putting together. Here is the flyer she sent me –

I was immediately intrigued and I went to my admin to pitch the idea. We decided that we could afford to send a handful of folks together there and we ended up inviting our two Geometry teachers and one of our middle school teachers to go with me. I have been on the inquiry bandwagon for awhile but I knew that I could learn some new wrinkles to add to my game. I was excited to bring along three colleagues to listen to someone other than me pitch this idea. I also knew that the power of being in a room together working side by side with colleagues is always a powerful thing. Well, we returned Friday afternoon and I have had a couple of days to let some of the ideas sink in – as well as a couple of days to get caught back up with my life here. I am happy to spend a little time here telling you about what a wonderful experience this was. I feel that there is some positive energy that can help move our department forward in examining how to open up our classroom culture to encourage more open inquiry from and for our students.

Amy and Allyson Rohrbach, a colleague of hers from Packer, put together a really meaningful and packed two days for us. We started with a short introductory session on Wednesday night. This seemed like an unusual idea, but it was a great way to start. We had what seemed like a completely innocent problem on our tables. It was a problem from Brilliant that involved counting squares. I wish I had the image of this problem, perhaps I can find it soon to share. What seemed like a completely innocent problem instead became a lovely conversation about counting procedures with different folks going to poster paper at the front of the room to share their strategies. We got to know each other over snacks and beverages and discussing math ideas, Amy and Allyson framed our work efficiently that night and I think that we all left the room that evening energized for our work the next day. Thursday was the heavy lifting day but even that was paced really well and Any and Allyson kept us shifting gears so we did not feel like we were sitting with one idea or one problem for too long. There was plenty of space to explore and I don’t think that any of us felt rushed. One of the problems we worked on is one that Amy and Sam Shah worked on together at Packer and Sam blogged about that problem here I know that the next time I am teaching Precalculus I will be framing our discussion through this problem. I feel certain that I read Sam’s post when it came out, but working side by side with folks in this environment brought the problem and the pedagogy behind it to life in SUCH a meaningful way.

Again, we had GREAT conversations discussing/debating/explaining ourselves. I certainly have fun listening to my students debate like this but there is a different level of fun when I can get lost in the math myself to this degree. It is also energizing to hear from and share with people that I have never met before. There is such a sense of open curiosity in a carefully designed environment like the one that Amy and Allyson helped create.

I walked away from this event convinced that I will have an ongoing exchange of ideas with Amy and Allyson and I am already discussing a school visit to bring some of my colleagues who did not make it to this event. You can follow Amy and Allyson over on twitter where they are @MathSenseLLC. you can also check out their next workshop which is described here They will be on the west coast for this trip. If this is more in your neighborhood and you want to be recharged in your commitment to inquiry driven education or if you want to be nudged in this direction, I cannot recommend this highly enough.